資料準備、模型建構與MLOps常見挑戰的解決方案「本書提供了豐富的範例,如果你是資料科學家或ML工程師,而且想要了解如何使用行之有效的解決方案來處理複雜的ML問題,你一定要看這本書。」—DavidKanterMLCommons執行長「如果你想在建構ML解決方案的過程中減少傷害、碰撞和磨擦,Lak、Sara和Michael可以在背後支持你。」—WillGrannisGoogleCloudCTOOffice常務董事本書的設計模式介紹常見的機器學習最佳實踐法和解決方案。作者是三位Google工程師,他們整理了一些經過驗證的方法,協助資料科學家匯整ML程序中常見的問題,用這些設計模式來將數百位專家的經驗整理成直觀、平易近人的建議。這本書詳細地解釋30種模式,介紹資料和問題的表示法、作業化、可重複性、再現性、靈活性、可解釋性和公平性,每一種模式都包含問題描述、各種可能的解決方案,以及視情況選擇最佳技術的建議。你將學會:‧在訓練、評估和部署ML模型時,認出常見的挑戰並處理它們‧表示各種ML模型的資料,包括embedding、featurecross(特徵交叉)等‧為具體的問題選擇適合的模型‧使用檢查點、發布策略和超參數調整來建立穩健的訓練循環‧部署可擴展的ML系統,以便用新資料來進行重新訓練和更新‧向關係人解釋模型為何做出那些預測,以確保模型公平地對待用戶‧提高模型的準確性、再現性和復原力
訓練 GOOGLE 工程師 機器學習 MLOPS ML 模型 資料